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7. Testing problems - first example

Earlier in the course we discussed the problem of how to test whether a “psychic”
can make predictions better than a random guesser. This is a prototype of what are called
testing problems. We start with this simple example and introduce various general terms
and notions in the context of this problem.

Question 172. A “psychic” claims to guess the order of cards in a deck. We shuffle a deck
of cards, ask her to guess and count the number of correct guesses, say X .

One hypotheses (we call it the null hypothesis and denote it by H0) is that the psychic
is guessing randomly. The alternate hypothesis (denoted H1) is that his/her guesses are
better than random guessing (in itself this does not imply existence of psychic powers. It
could be that he/she has managed to see some of the cards etc.). Can we decide between
the two hypotheses based on X?

What we need is a rule for deciding which hypothesis is true. A rule for deciding
between the hypotheses is called a test. For example, the following are examples of rules
(the only condition is that the rule must depend only on the data at hand).

Example 173. We present three possible rules.
(1) If X is an even number declare that H1 is true. Else declare that H1 is false.
(2) If X ≥ 5, then accept H1, else reject H1.
(3) If X ≥ 8, then accept H1, else reject H1.

The first rule does not make much sense as the parity (evenness or oddness) has little to
do with either hypothesis. On the other hand, the other two rules make some sense. They
rely on the fact that if H1 is true then we expect X to be larger than if H0 is true. But the
question still remains, should we draw the line at 5 or at 8 or somewhere else?

In testing problems there is only one objective, to avoid the following two possible
types of mistakes.

Type-I error: H0 is true but our rule concludes H1.

Type-II error: H1 is true but our rule concludes H0.

The probability of type-I error is called the significance level of the test and usually denote
by α. That is, α = PH0{the test accepts H1} where we write PH0 to mean that the probabil-
ity is calculated under the assumption that H0 is true. Similarly one define the power of the
test as β = PH1{the test accepts H1}. Note that β is the probability of not making type-II
error, and hence we would like it to be close to 1. Given two tests with the same level of
significance, the one with higher power is better. Ideally we would like both to be small,
but that is not always achievable.

We fix the desired level of significance, usually α = 0.05 or 0.1 and only consider tests
whose probability of type-I error is at most α. It may seem surprising that we take α to
be so small. Indeed the two hypotheses are not treated equally. Usually H0 is the default
option, representing traditional belief and H1 is a claim that must prove itself. As such, the
burden of proof is on H1.

To use analogy with law, when a person is convicted, there are two hypotheses, one
that he is guilty and the other that he is not guilty. According to the maxim “innocent till
proved guilty”, one is not required to prove his/her innocence. On the other hand guilt
must be proved. Thus the null hypothesis is “not guilty” and the alternative hypothesis is
“guilty”.
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In our example of card-guessing, assuming random guessing, we have calculated the
distribution of X long ago. Let pk = P{X = k} for k = 0,1, . . . ,52. Now consider a test of
the form “Accept H1 if X ≥ k0 and reject otherwise”. Its level of significance is

PH0{accept H1} = PH0{X ≥ k0} =
52

∑
i=k0

pi.

For k0 = 0, the right side is 1 while for k0 = 52 it is 1/52! which is tiny. As we increase
k0 there is a first time where it becomes less than or equal to α. We take that k0 to be the
threshold for cut-off.

In the same example of card-guessing, let α = 0.01. Let us also assume that Poisson
approximation holds. This means that p j ≈ e−1/ j! for each j. Then, we are looking for
the smallest k0 such that ∑∞

j=k0
e−1/ j! ≤ 0.01. For k0 = 4, this sum is about 0.019 while

for k0 = 5 this sum is 0.004. Hence, we take k0 = 5. In other words, accept H1 if X ≥ 5
and reject if X < 5. If we took α = 0.0001 we would get k0 = 7 and so on.

Strength of evidence: Rather than merely say that we accepted H1 or rejected it would
be better to say how strong the evidence is in favour of the alternative hypothesis. This
is captured by the p-value, a central concept of decision making. It is defined as the
probability that data drawn from the null hypothesis would show closer agreement with
the alternative hypothesis than the data we have at hand (read it five times!).

Before we compute it in our example, let us return to the analogy with law. Suppose
a man is convicted for murder. Recall that H0 is that he is not guilty and H1 is that he is
guilty. Suppose his fingerprints were found in the house of the murdered person. Does it
prove his guilt? It is some evidence in favour of it, but not necessarily strong. For example,
if the convict was a friend of the murdered person, then he might be innocent but have left
his fingerprints on his visits to his friend. However if the convict is a total stranger, then
one wonders why, if he was innocent, his finger prints were found there. The evidence
is stronger for guilt. If bloodstains are found on his shirt, the evidence would be even
stronger! In saying this, we are asking ourselves questions like “if he was innocent, how
likely is it that his shirt is blood-stained?”. That is p-value. Smaller the p-value, stronger
the evidence for the alternate hypothesis.

Now we return to our example. Suppose the observed value is Xobs = 4. Then the
p-value is P{X ≥ 4}= p4 + . . .+ p52 ≈ 0.019. If the observed value was Xobs = 6, then the
p-value would be p6 + . . .+ p52 ≈ 0.00059. Note that the computation of p-value does not
depend on the level of significance. It just depends on the given hypotheses and the chosen
test.

8. Testing for the mean of a normal population

Let X1, . . . ,Xn be i.i.d. N(µ,σ2). We shall consider the following hypothesis testing
problems.

(1) One sided test for the mean. H0 : µ = µ0 versus H1 : µ > µ0.
(2) Two sided test for the mean. H0 : µ = µ0 versus H1 : µ %= µ0.

This kind of problem arises in many situations in comparing the effect of a treatment as
follows.

Example 174. Consider a drug claimed to reduce blood pressure. How do we check if
it actually does? We take a random sample of n patients, measure their blood pressures
Y1, . . . ,Yn. We administer the drug to each of them and again measure the blood pressures
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Y ′
1, . . . ,Y

′
n, respectively. Then, the question is whether the mean blood pressure decreases

upon giving the treatment. To this effect, we define Xi = Yi −Y ′
i and wish to test the

hypothesis that the mean of Xis is strictly positive. If Xi are indeed normally distributed,
this is exactly the one-sided test above.

Example 175. The same applies to test the efficacy of a fertilizer to increase yield, a
proposed drug to decrease weight, a particular educational method to improve a skill, or a
particular course such as the current probability and statistics course in increasing subject
knowledge. To make a policy decision on such matters, we can conduct an experiment as
in the above example.

For example, a bunch of students are tested on probability and statistics and their
scores are noted. Then they are subjected to the course for a semester. They are tested
again after the course (for the same marks, and at the same level of difficulty) and the
scores are again noted. Take differences of the scores before and after, and test whether
the mean of these differences is positive (or negative, depending on how you take the
difference). This is a one-sided tests for the mean. Note that in these examples, we are
taking the null hypothesis to be that there is no effect. In other words, the burden of proof
is on the new drug or fertilizer or the instructor of the course.

The test: Now we present the test. We shall use the statistic T :=
√

n(X−µ0)
s where X and

s are the sample mean and sample standard deviation.

(1) In the one-sided test, we accept the alternative hypothesis if T > tn−1(α).
(2) In the two sided-test, accept the alternative hypothesis if T > tn−1(α/2) or T <

−tn−1(α/2).

The rationale behind the tests: If X is much larger than µ0 then the greater is the evidence
that the true mean µ is greater than µ0. However, the magnitude depends on the standard
deviation and hence we divide by s (if we knew σ we would divide by that). Another way
to see that this is reasonable is that T does not depend on the units in which you measure
Xis (whether Xi are measured in meters or centimeters, the value of T does not change).

The significance level is α: The question is where to draw the threshold. We have seen
before that under the null hypothesis T has a tn−1 distribution. Recall that this is because,
if the null hypothesis is true, then

√
n(X−µ0)

σ ∼ N(0,1), (n− 1)s2/σ2 ∼ χ2
n−1 and the two

are independent. Thus, the given tests have significance level α for the two problems.

Remark 176. Earlier we considered the problem of constructing a (1−α)-CI for µ when
σ2 is unknown. The two sided test abovecan be simply stated as follows: Accept the
alternative at level α if the corresponding (1−α)-CI does not contain µ0. Conversely, if
we had dealt with testing problems first, we could define a confidence interval as the set of
all those µ0 for which the corresponding test rejects the alternative.

Thus, confidence intervals and testing are closely related. This is true in some greater
generality. For example, we did not construct confidence interval for µ, but you should do
so and check that it is closely related to the one-sided tests above.
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9. Testing for the difference between means of two normal populations

Let X1, . . . ,Xn be i.i.d. N(µ1,σ2
1) and let Y1, . . . ,Ym be i.i.d. N(µ2,σ2

2). We shall con-
sider the following hypothesis testing problems.

(1) One sided test for the difference in means. H0 : µ1 = µ2 versus H1 : µ1 > µ2.
(2) Two sided test for the mean. H0 : µ1 = µ2 versus H1 : µ1 != µ2.

This kind of problem arises in many situations in comparing two different populations
or the effect of two different treatments etc. Actual data sets of such questions can be found
in the homework.

Example 177. Suppose a new drug to reduce blood pressure is introduced by a pharmaceu-
tical company. There is already an existing drug in the market which is working reasonably
alright. But it is claimed by the company that the new drug is better. How to test this claim?

We take a random sample of n + m patients and break them into two groups of n and
of m patients. The first group is administered the new drug while the second group is
administered the old drug. Let X1, . . . ,Xn be the decrease in blood pressures in the first
group. Let Y1, . . . ,Ym be the decrease in blood pressures in the second group. The claim is
that one average Xis are larger than Yis.

Note that it does not make sense to subtract Xi−Yi and reduce to a one sample test as
in the previous section (here Xi is a measurement on one person and Yi is a measurement on
a completely different person! Even the number of persons in the two groups may differ).
This is an example of a two-sample test as formulated above.

Example 178. The same applies to many studies of comparision. If someone claims that
Americans are taller than Indians on average, or if it is claimed that cycling a lot leads to
increase in height, or if it is claimed that Chinese have higher IQ than Europeans, or if it
is claimed that Honda Activa gives better mileage than Suzuki Access, etc., etc., the claims
can be reduced to the two-sample testing problem as introduced above.

BIG ASSUMPTION: We shall assume that σ2
1 = σ2

2 = σ2 (yet unknown). This assump-
tion is not made because it is natural or because it is often observed, but because it leads
to mathematical simplification. Without this assumption, no exact level-α test has been
found!

The test: Let X ,Y denote the sample means of X and Y and let sX ,sY denote the corre-
sponding sample standard deviations. Since σ2 is the assumed to be the same for both
populations, s2

X and s2
Y can be combined to define

S2 :=
(n−1)s2

X +(m−1)s2
Y

m+n−2
which is a better estimate for σ2 than just s2

X or s2
Y (this S2 is better than simply taking

(s2
X + s2

Y )/2 because it gives greater weight to the larger sample).

Now define T =
√

1
n + 1

m

(
X−Y

S

)
. The following tests hav significance level α.

(1) For the one-sided test, accept the alternative if T > tn+m−2(α).
(2) For the one-sided test, accept the alternative if T > tn+m−2(α/2) or T <−tn+m−2(α/2).

The rationale behind the tests: If X is much larger than Y then the greater is the evidence
that the true mean µ1 is greater than µ2. But again we need to standardize by dividing
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this by an estimate of σ, namely S. The resulting statistic T has a tm+n−2 distribution as
explained below.

The significance level is α: The question is where to draw the threshold. From the facts
we know,

X ∼ N(µ1,σ2
1/n),

Y ∼ N(µ2,σ2
2/m),

(n−1)
σ2 s2

X ∼ χ2
n−1,

(m−1)
σ2 s2

Y ∼ χ2
m−1

and the four random variables are independent. From this, it follows that (m+n−2)S2 has

χ2
n+m−2 distribution. Under the null hypothesis 1

σ

√
1
n + 1

m (X −Y ) has N(0,1) distribution
and is independent of S. Taking ratios, we see that T has tm+n−2 distribution (under the
null hypothesis).

10. Testing for the mean in absence of normality

Suppose X1, . . . ,Xn are i.i.d. Ber(p). Consider the test

H0 : p = p0 versus H1 : p #= p0.

One can also consider the one-sided test. Just as in the confidence interval problem, we
can give a solution when n is large, using the approximation provided by the central limit
theorem. Recall that an approximate (1−α)-CI is



Xn− zα/2

√
Xn(1−Xn)

n
,Xn + zα/2

√
Xn(1−Xn)

n



 .

Inverting this confidence interval, we see that a reasonable test is:
Reject the alternative if p0 belongs to the above CI. That is, accept the alternative if

Xn− zα/2

√
Xn(1−Xn)

n
≤ p0 ≤ Xn + zα/2

√
Xn(1−Xn)

n

This test has (approximately) significance level α.

More generally, if we have data X1, . . . ,Xn from a population with mean µ and variance
σ2, then consider the test

H0 : µ = µ0 versus H1 : µ #= µ0.

A test with approximate significance level α is given by: Reject the alternative if

Xn− zα/2
sn√

n
≤ µ0 ≤ Xn + zα/2

sn√
n
.

Just as with confidence intervals, we can find the actual level of significance (if n is not
large enough) by simulating data on a computer.


